Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Molecules ; 26(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1470936

RESUMEN

The SARS-CoV-2 virus is highly contagious to humans and has caused a pandemic of global proportions. Despite worldwide research efforts, efficient targeted therapies against the virus are still lacking. With the ready availability of the macromolecular structures of coronavirus and its known variants, the search for anti-SARS-CoV-2 therapeutics through in silico analysis has become a highly promising field of research. In this study, we investigate the inhibiting potentialities of triazole-based compounds against the SARS-CoV-2 main protease (Mpro). The SARS-CoV-2 main protease (Mpro) is known to play a prominent role in the processing of polyproteins that are translated from the viral RNA. Compounds were pre-screened from 171 candidates (collected from the DrugBank database). The results showed that four candidates (Bemcentinib, Bisoctrizole, PYIITM, and NIPFC) had high binding affinity values and had the potential to interrupt the main protease (Mpro) activities of the SARS-CoV-2 virus. The pharmacokinetic parameters of these candidates were assessed and through molecular dynamic (MD) simulation their stability, interaction, and conformation were analyzed. In summary, this study identified the most suitable compounds for targeting Mpro, and we recommend using these compounds as potential drug molecules against SARS-CoV-2 after follow up studies.


Asunto(s)
Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Triazoles/química , Antivirales/metabolismo , Antivirales/uso terapéutico , Benzocicloheptenos/química , Benzocicloheptenos/metabolismo , Sitios de Unión , COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , Bases de Datos de Compuestos Químicos , Semivida , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/uso terapéutico , Unión Proteica , Relación Estructura-Actividad Cuantitativa , SARS-CoV-2/aislamiento & purificación , Triazoles/metabolismo , Triazoles/uso terapéutico , Tratamiento Farmacológico de COVID-19
2.
Proteins ; 89(11): 1425-1441, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1281247

RESUMEN

The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still has serious negative effects on health, social life, and economics. Recently, vaccines from various companies have been urgently approved to control SARS-CoV-2 infections. However, any specific antiviral drug has not been confirmed so far for regular treatment. An important target is the main protease (Mpro ), which plays a major role in replication of the virus. In this study, Gaussian and residue network models are employed to reveal two distinct potential allosteric sites on Mpro that can be evaluated as drug targets besides the active site. Then, Food and Drug Administration (FDA)-approved drugs are docked to three distinct sites with flexible docking using AutoDock Vina to identify potential drug candidates. Fourteen best molecule hits for the active site of Mpro are determined. Six of these also exhibit high docking scores for the potential allosteric regions. Full-atom molecular dynamics simulations with MM-GBSA method indicate that compounds docked to active and potential allosteric sites form stable interactions with high binding free energy (∆Gbind ) values. ∆Gbind values reach -52.06 kcal/mol for the active site, -51.08 kcal/mol for the potential allosteric site 1, and - 42.93 kcal/mol for the potential allosteric site 2. Energy decomposition calculations per residue elucidate key binding residues stabilizing the ligands that can further serve to design pharmacophores. This systematic and efficient computational analysis successfully determines ivermectine, diosmin, and selinexor currently subjected to clinical trials, and further proposes bromocriptine, elbasvir as Mpro inhibitor candidates to be evaluated against SARS-CoV-2 infections.


Asunto(s)
Antivirales/metabolismo , Benzofuranos/química , Proteasas 3C de Coronavirus/metabolismo , Reposicionamiento de Medicamentos/métodos , Imidazoles/química , Sitio Alostérico , Antivirales/química , Antivirales/farmacología , Benzofuranos/metabolismo , Benzofuranos/farmacología , Sitios de Unión , Bromocriptina/química , Bromocriptina/metabolismo , Bromocriptina/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Diosmina/química , Diosmina/metabolismo , Hidrazinas/química , Hidrazinas/metabolismo , Hidrazinas/farmacología , Imidazoles/metabolismo , Imidazoles/farmacología , Ivermectina/química , Ivermectina/metabolismo , Ivermectina/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología , Estados Unidos , United States Food and Drug Administration
3.
J Med Chem ; 64(1): 890-904, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: covidwho-997768

RESUMEN

The sigma 1 receptor (S1R) is a molecular chaperone protein located in the endoplasmic reticulum and plasma membranes and has been shown to play important roles in various pathological disorders including pain and, as recently discovered, COVID-19. Employing structure- and QSAR-based drug design strategies, we rationally designed, synthesized, and biologically evaluated a series of novel triazole-based S1R antagonists. Compound 10 exhibited potent binding affinity for S1R, high selectivity over S2R and 87 other human targets, acceptable in vitro metabolic stability, slow clearance in liver microsomes, and excellent blood-brain barrier permeability in rats. Further in vivo studies in rats showed that 10 exhibited negligible acute toxicity in the rotarod test and statistically significant analgesic effects in the formalin test for acute inflammatory pain and paclitaxel-induced neuropathic pain models during cancer chemotherapy. These encouraging results promote further development of our triazole-based S1R antagonists as novel treatments for pain of different etiologies.


Asunto(s)
Manejo del Dolor/métodos , Receptores sigma/antagonistas & inhibidores , Triazoles/química , Animales , Sitios de Unión , Barrera Hematoencefálica/metabolismo , Diseño de Fármacos , Cobayas , Semivida , Humanos , Microsomas Hepáticos/metabolismo , Simulación de Dinámica Molecular , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Estructura Terciaria de Proteína , Relación Estructura-Actividad Cuantitativa , Ratas , Receptores sigma/metabolismo , Triazoles/metabolismo , Triazoles/uso terapéutico
4.
Biophys Chem ; 267: 106478, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-778539

RESUMEN

Discovery of a potent SARS-CoV-2 main protease (Mpro) inhibitor is the need of the hour to combat COVID-19. A total of 1000 protease-inhibitor-like compounds available in the ZINC database were screened by molecular docking with SARS-CoV-2 Mpro and the top 2 lead compounds based on binding affinity were found to be 1,2,4 triazolo[1,5-a] pyrimidin-7-one compounds. We report these two compounds (ZINC000621278586 and ZINC000621285995) as potent SARS-CoV-2 Mpro inhibitors with high affinity (<-9 kCal/mol) and less toxicity than Lopinavir and Nelfinavir positive controls. Both the lead compounds effectively interacted with the crucial active site amino acid residues His41, Cys145 and Glu166. The lead compounds satisfied all of the druglikeness rules and devoid of toxicity or mutagenicity. Molecular dynamics simulations showed that both lead 1 and lead 2 formed stable complexes with SARS-CoV-2 Mpro as evidenced by the highly stable root mean square deviation (<0.23 nm), root mean square fluctuations (0.12 nm) and radius of gyration (2.2 nm) values. Molecular mechanics Poisson-Boltzmann surface area calculation revealed thermodynamically stable binding energies of -129.266 ± 2.428 kJ/mol and - 116.478 ± 3.502 kJ/mol for lead1 and lead2 with SARS-CoV-2 Mpro, respectively.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteínas M de Coronavirus/química , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Pirimidinas/química , SARS-CoV-2/enzimología , Triazoles/química , Secuencia de Aminoácidos , Sitios de Unión , COVID-19/patología , COVID-19/virología , Dominio Catalítico , Proteínas M de Coronavirus/metabolismo , Cristalografía por Rayos X , Humanos , Simulación del Acoplamiento Molecular , Profármacos/química , Profármacos/metabolismo , Inhibidores de Proteasas/metabolismo , Unión Proteica , Pirimidinas/metabolismo , SARS-CoV-2/aislamiento & purificación , Alineación de Secuencia , Termodinámica , Triazoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA